Edge list: [(0, 35), (0, 5), (0, 7), (0, 8), (0, 21), (0, 23), (0, 28), (0, 29), (1, 32), (1, 34), (1, 4), (1, 5), (1, 6), (1, 15), (1, 16), (1, 17), (1, 20), (1, 24), (2, 8), (2, 27), (2, 21), (2, 23), (3, 33), (3, 34), (3, 35), (3, 5), (3, 38), (3, 9), (3, 17), (3, 21), (3, 23), (3, 28), (4, 37), (4, 13), (4, 25), (4, 28), (4, 29), (5, 32), (5, 8), (5, 11), (5, 13), (5, 25), (5, 30), (6, 10), (6, 13), (6, 16), (6, 19), (6, 20), (6, 31), (7, 16), (7, 12), (7, 22), (7, 33), (8, 33), (8, 10), (8, 11), (8, 14), (8, 17), (8, 20), (8, 24), (8, 25), (8, 29), (9, 37), (9, 16), (9, 22), (9, 23), (9, 28), (9, 31), (10, 34), (10, 13), (10, 15), (10, 17), (10, 22), (10, 27), (10, 28), (10, 31), (11, 39), (11, 13), (11, 19), (11, 24), (11, 25), (12, 33), (12, 39), (12, 14), (12, 15), (12, 18), (12, 19), (12, 23), (12, 24), (12, 28), (13, 21), (13, 26), (13, 28), (14, 37), (14, 17), (14, 18), (14, 22), (14, 28), (14, 30), (14, 31), (15, 35), (15, 28), (15, 29), (16, 21), (16, 24), (16, 25), (17, 34), (17, 26), (17, 31), (18, 32), (18, 36), (18, 34), (19, 32), (19, 35), (19, 37), (19, 23), (19, 24), (20, 34), (20, 35), (21, 34), (22, 35), (22, 36), (22, 25), (23, 32), (23, 36), (23, 33), (23, 28), (23, 29), (24, 32), (24, 35), (24, 30), (25, 32), (26, 34), (26, 39), (26, 33), (27, 37), (27, 31), (28, 34), (28, 37), (28, 35), (28, 31), (29, 32), (29, 34), (29, 35), (29, 31), (30, 32), (30, 34), (31, 34), (31, 35), (31, 38), (32, 35), (32, 36), (32, 38), (33, 35), (34, 36), (34, 37), (34, 35), (36, 37), (36, 38), (36, 39), (37, 38), (38, 39)]
Minimum Dominating Set (red) = [12, 21, 25, 31, 34]
Independent Dominating Set (green) = [2, 13, 14, 16, 35, 36]
Domination number = 5
Independent domination number = 6
Possible Minimum Dominating Vertices (magenta) = [2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 22, 23, 25, 26, 27, 28, 32, 35, 36, 37, 38, 39]
Always Minimum Dominated Vertices (cyan) = [0, 1, 3, 4, 10, 15, 17, 18, 19, 20, 21, 24, 29, 30, 31, 33, 34]